
The Fel ine Acute Patient Physiologic and Laboratory Evaluation
(Fel ine APPLE) Score: A Severity of Il lness Strat ification System

for Hospital ized Cats

G. Hayes, K. Mathews, G. Doig, S. Kruth, S. Boston, S. Nykamp, Z. Poljak, and C. Dewey

Background: Scores allowing objective stratification of illness severity are available for dogs and horses, but not cats.

Validated illness severity scores facilitate the risk-adjusted analysis of results in clinical research, and also have applications in

triage and therapeutic protocols.

Objective: To develop and validate an accurate, user-friendly score to stratify illness severity in hospitalized cats.

Animals: Six hundred cats admitted consecutively to a teaching hospital intensive care unit.

Methods: This observational cohort study enrolled all cats admitted over a 32-month period. Data on interventional, phys-

iological, and biochemical variables were collected over 24 hours after admission. Patient mortality outcome at hospital

discharge was recorded. After random division, 450 cats were used for logistic regressionmodel construction, and data from 150

cats for validation.

Results: Patient mortality was 25.8%. Five- and 8-variable scores were developed. The 8-variable score contained mentat-

ion score, temperature, mean arterial pressure (MAP), lactate, PCV, urea, chloride, and body cavity fluid score. Area under the

receiver operator characteristic curve (AUROC) on the construction cohort was 0.91 (95% CI, 0.87–0.94), and 0.88 (95% CI,

0.84–0.96) on the validation cohort. The 5-variable score contained mentation score, temperature, MAP, lactate, and PCV.

AUROC on the construction cohort was 0.83 (95% CI, 0.79–0.86), and 0.76 (95% CI, 0.72–0.84) on the validation cohort.

Conclusions and Clinical Importance: Two scores are presented enabling allocation of an accurate and user-friendly illness

severity measure to hospitalized cats. Scores are calculated from data obtained over the 1st 24 hours after admission, and are

diagnosis-independent. The 8-variable score predicts outcome significantly better than does the 5-variable score.
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S
tudies of newmanagement and therapeutic protocols
in veterinary medicine frequently are of an observa-

tional design. The experienced clinician recognizes that
morbidity and mortality outcomes depend not only on
the therapy or management protocol under study, but
also on the patient’s underlying health status and physi-
ologic reserve. Randomization can be applied to
minimize disparity in illness severity between treatment
groups1; however, observational studies require robust
and valid methods of risk adjustment to decrease bias
and improve interpretability and transferability of re-
sults.2 Illness severity scores have evolved to meet this
need, and typically provide a measure of mortality risk.
The ideal score should reflect illness severity accu-

rately, use objective measures that are accessible to most
clinicians, and be simple to calculate.2,3 Scores that func-
tion independent of primary diagnosis maximize
prospective applicability and decrease the risk of intro-
ducing bias in a risk-adjusted analysis by exclusion of
patient groups.4 Scores can use patient data collected on
the 1st intensive care unit (ICU) day or data collected

every day throughout the patient hospital stay. Repeti-
tive scores can become difficult to interpret when length
of hospital stay varies across treatment groups.5 Typi-
cally the most abnormal values of physiologic variables
collected over the defined time period are selected for en-
try into score development or calculation, because they
provide a convenient, predictive, and unbiased summary
measure.6–9 Diagnosis-independent illness severity scores
are available for humans, dogs, and horses.10–13 No such
scores are available for cats.

The objective of this study was to construct a validated
and robust mortality risk prediction score for hospitalized
cats. We wish to develop a score with a high degree of
predictive accuracy that could be presented in an accessi-
ble format allowing manual calculation. This then would
allow assignment of an objective measure reflecting sever-
ity of illness to any cat enrolled in clinical research.

Materials and Methods

This was a single center cohort study conducted at a teaching

hospital serving a predominantly referral patient population. All cats

admitted to the ICU were enrolled over a 32-month period, from

January 2007 until August 2009. The minimum criteria for admission

to the ICU were the need for ongoing intravenous (IV) access for

continuous administration of IV fluids or medication or the need for

close observation. Patients were subsequently excluded from the

study if inconsistencies in patient identification were identified.
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Data were collected by 4 investigators according to a written

protocol. Approval from the hospital ethics committee was ob-

tained and informed owner consent waived because of the

noninterventional nature of the study design. Potential predictive

variables (n 5 41) were selected a priori based on an anticipated re-

lationship with mortality risk from existing canine and human

scores, primary literature, and expert clinical opinion. Some vari-

ables, reported previously as predictive, were not collected because

of concerns that they would limit future accessibility or applicability

of the score or be liable to measurement error because of lack of

measurement standardization among centers.

The variables assessed are presented in Table 1, and the measure-

ment methodology in Table 2. Body cavity fluid scores and men-

tation scores were assigned as detailed in Table 3. All variables were

assessed over the 1st 24 hours after ICU admission, with the excep-

tion of ‘‘mentation score,’’ which was assessed at admission. For the

remaining variables, the most abnormal values observed over the 24

hours after admission were recorded. No additional diagnostic test-

ing beyond that required for clinical decisionmaking was performed

for the purposes of the study. For the blood pressure variable, blood

pressure was measured by both direct and indirect manometry and

Doppler flow signals. For Doppler techniques, mean arterial pres-

sure (MAP) was recorded as the cuff pressure associated with the 1st

return of an audible signal on cuff deflation.

At hospital discharge, outcome was recorded as mortality status.

For cats that were euthanized, the reasons for euthanasia were re-

viewed in the written medical record and discussed with the primary

clinician if clarification was required. Euthanized patients were sub-

categorized as euthanasia performed to relieve suffering in the face

of anticipated imminent death, euthanasia performed due to current

patient morbidity combined with diagnosis of a disease likely to be

ultimately terminal, and euthanasia performed in the face of clinical

illness and financial pressure. Euthanasia for any reason and non-

euthanasia death were allotted equivalent status in the primary

model build. For the validation process, the predictive performance

of the score was evaluated for a group restricted to include noneu-

thanasia death only and then also for noneuthanasia death and

various euthanasia subsets.

Statistical Methods

Descriptive statistics were reported as mean and standard devia-

tion where data were normally distributed, and a median and

interquartile range where data were not normally distributed. Nor-

mality of data was tested with the Shapiro-Wilks test. Associations

between mortality and categorical data were tested with Fisher’s

Table 1. Variables selected a priori for assessment of
association with mortality risk.

Variable Type Variable

Physical exam-

ination

Age, mentation score, EKG score, body cavity

fluid score, obesity score, bodyweight, rectal

temperature, heart rate, respiratory rate,

MAP, urine output, SpO2

Benchtop labo-

ratory

results

Glucose, lactate, PCV, TP, PvCO2, HCO3, pH,

Na, Cl, K, iCa, ACT, PT, aPTT

Full laboratory

results

Creatinine, urea, albumin, total bilirubin, WBC

count, platelet count, CK, cholesterol

Historical

information

Chronicity

Intervention Provision of oxygen support, pressor support, me-

chanical ventilation support, nutrition score,

urinary catheter placement, transfusion sup-

port

MAP, mean arterial pressure; iCa, ionized calcium; ACT, acti-

vated clotting time; PT, prothrombin time.

The variables in bold are those that were entered into the multi-

variable logistic regression procedure after elimination of variables

with a univariable mortality association of P 4 .2 or with 430%

observations missing.

Table 2. Methods and measurement methodology for
variables included in building the APPLE score multi-
variable models.

Variable Measurement Methodology

Albumin, creatinine,

total bilirubin,

urea

Hitachi 911 automated chemistry analyzer,

Hoffmann-La Roche Limited, Missis-

sauga, Ontario, Canada

Glucose, lactate, Na,

Cl, HCO3, pH, K

ABL 800 Flex, Radiometer Medical Aps,

Bronshoj, Denmark

Platelet count, WBC

count

Advia 120 hematology analyzer, Siemens

Healthcare Diagnostics, Deerfield, IL

Body cavity fluid

score

Ultrasound assessment (FAS technique, see

Table 3) with a Sonosite Titan SonoSite

Canada Inc., Markham, Ontario, Ca-

nada. Assessments were performed as a

routine component of triage by both in-

terns and residents without specialized

training in u/s. If medical history and

physical exam did not trigger u/s assess-

ment, the u/s score was recorded as 0

Mentation score Clinical assessment as detailed in Table 3,

applied at admission

PCV Manual read from heparinized hem-

atocrit tubes after centrifugation at

30,000 rpm for 3 minutes

TP Refractometric measurement from total so-

lids using heparinized plasma taken from

hematocrit tubes spun at 30,000 rpm for

3 minutes and read on a temperature

compensated hand-held refractometer

EKG score Clinical score applied after visual assess-

ment of EKG at admission or over the

1st 24 hours of ICU stay, where 1 5

normal, 2 5 abnormalities present but

no specific pharmacotherapy applied, 3

5 abnormalities present and pharma-

cotherapy applied

Rectal temperature Most abnormal rectal temperature taken

with digital thermometer

MAP Most abnormal MAP recorded with either

direct bp monitoring, or an automated

indirect manometer Cardell 9401

(Thames Medical, Worthing, West Sus-

sex, UK), or a hand held Doppler probe

(Parks 811-b, ParksMedical Electronics

Sales, Inc., Las Vegas, NV) withmanual

cuff inflation-first returning signal noise

recorded as MAP14

Nutrition score 0 5 ate within 1st 24 hours of admission,

1 5 anorexic, 2 5 fed via an e-tube or

PEG tube 3 5 parenteral nutrition

Chronicity variable Symptomatic for 44 weeks with clinical

signs associated with primary reason

for admission

APPLE, Acute Patient Physiologic and Laboratory Evaluation;

ICU, intensive care unit; MAP, mean arterial pressure.

27Feline APPLE Score



exact test. Associations between mortality and continuous data

were tested with the Student t-test where normally distributed, and

the Mann-Whitney test where not normally distributed. Linearity

assumptions were assessed and addressed as described below.

Score Development Methodology

The study population was randomly divided into a score con-

struction or ‘‘training’’ cohort (3/4 of patients) and a score

validation cohort (1/4 of patients).

Putative variables for which values were missing for over 30% of

patients were excluded from further analysis. Consistent with estab-

lished score development methodology, where variables had fewer

than 30% missing values, the missing values were replaced with

normal values where that made biological sense or mean values

where normal did not apply. The variables ‘‘age’’ and ‘‘body

weight’’ are instances where normal did not apply.7,8 Categorical

and binary variables then were assessed for association with mor-

tality as described above (Table 3).

The relationship between continuous variables and the binary

mortality outcome was assessed by locally weighted scatter plot

smoothing (LOWESS).15–17 This method overcomes the problem of

determining the functional relationship of a continuous variable

with an outcome when the outcome is binary. To obtain the

smoothed value of Y at X 5 x, all the data having x values within a

suitable interval about x, known as the bandwidth, are taken. A re-

gression line is fitted to all of these points, with the points closer to

the value of x being weighted in their contribution to the smoothed

y value. The predicted value from this regression atX 5 x is taken as

the estimate of EðYjX ¼ xÞ. Smoothed values for E(Y) are obtained

for each observed value of X. We selected a conservative bandwidth

of 0.8 to minimize ‘‘wriggle’’ in the resulting functions. LOWESS

lines can be fitted both on the original scale of Y, which assists ease

of interpretation from a clinical interest perspective (showing for

example the smoothed plot of observed percentage mortality

against PCV) or on the logit scale.

After assessment of the linearity assumption on the logit scale of

Y, continuous variables not fulfilling this assumption were catego-

rized. The continuous variable was subdivided, for example, category

1 for temperature439.51C, category 2 for temperature 38.5–39.51C,

category 3 for temperature 37.5–38.41C, and each

patient then was assigned to the appropriate category for the vari-

able. When subsequently entered into a logistic regression model, this

allowed each category to receive the appropriate risk coefficient in-

dependent of the adjoining categories, thus bypassing the linearity

assumption.18 We selected the points for divisions within each

category divisors by percentiles of risk. For instance, for tempera-

ture, the LOWESS curve indicated a risk range of approximately 20–

60% between the lowest and highest observed values. The range of

38.5–39.51C appeared to represent the lowest risk category for that

variable. Categories of 37.5–38.51C and 439.51C were selected as

representing the next highest risk categories, then 36.0–37.01C, and

finallyo36.01C. After categorizing variables as indicated by the logit

scale assessments, putative variables were entered into univariable lo-

gistic regression models to obtain a measure of statistical association

between the variable and mortality outcome by the likelihood ratio

test. The referent categories for each variable were set as those with

the lowest mortality risk. Variables not associated with nonsurvival in

the univariate analyses (P4 .2) were dropped at this stage.

The remaining variables then were entered into a stepwise back-

ward elimination procedure in the construction cohort to further

eliminate variables with poor explanatory power in a multivariable

context. The cut-off for retention was set at P o .05 by the likeli-

hood ratio test. Bootstrapping with a sample size of n 5 225 and 100

repetitions per iteration also was performed at each stage of the

elimination procedure to attempt to improve the stability of the

variable selection process given the relatively small sample size

available. Variable collinearity was assessed by a symmetric matrix

inversion routine, with variables dropped based on numerical accu-

racy assessments. After the backwards elimination procedure, the

variables dropped were re-entered one by one back into the model

and assessed for significance. Each variable then was assessed in a

manual build process.

For the manual build, each model was developed in the construc-

tion or ‘‘training’’ cohort, and then assessed for area under the

receiver operator characteristic curve (AUROC) performance and

Hosmer-Lemeshow C statistic calibration in first the construction

and then the validation cohort. Degrees of freedom were adjusted

appropriately. Bayesian Information Criteria (BIC) for the non-

nested models also were assessed in the construction cohort. An

absolute difference in BIC of 46 was taken as strong evidence of

model improvement. Before final presentation, adjoining categories

within variables were collapsed if the coefficient assigned to the cat-

egory failed to achieve statistical significance compared with the

referent category, which was again set as the category for each vari-

able with the lowest risk. The models were checked by graphical

examination of deviance residuals, leverage, and the Pregibon delta

beta measure. Finally, the model discrimination and calibration

characteristics also were assessed in subsets of the validation cohort

that varied by cause of death.

The models were converted to an integer score as follows: The ref-

erent categories for each variable had been previously reset to the

lowest risk category identified for each variable in the multivariable

context. This had the effect of making all the coefficients for each

category of each variable positive. Two desired maximal score values

were empirically selected as 80 for the 8-variable model and 50 for the

5-variable model. For each model, the coefficient assigned to the cat-

egory achieving the greatest magnitude (and thus reflecting the

highest risk) for each variable was identified and summed across all

the variables in the model. This value then was used as the divisor for

the maximum score selected for the model. A multiplier was thus

identified that when applied to the coefficient of the highest risk cat-

egory for each variable would result in the sum of the maximum score

achievable for the model equalling the desired maximum score. All

the coefficients for each category of each variable then were multi-

plied by the appropriate multiplier for each model, and rounded to

the nearest integer. These then constituted the integer scores assigned

to each category in each variable. To check that the rounding process

Table 3. Algorithm for assignment of the body cavity
fluid score and mentation score used for feline APPLE
score calculation.

Mentation score: assessed at

admission before sedation/

analgesic administration

Body cavity fluid score

(ultrasonographic evaluation,

as assessed by FAST or

TFAST techniquea)

0 5 normal 0 5 no abdominal, thoracic or

pericardial free fluid identi-

fied

1 5 able to stand unassisted,

responsive but dull

1 5 abdominal OR thoracic OR

pericardial free fluid identi-

fied

2 5 can stand only when

assisted, responsive but dull

2 5 2 or more of abdominal,

thoracic, or pericardial free

fluid identified

3 5 unable to stand, responsive

4 5 unable to stand, unrespon-

sive

APPLE, Acute Patient Physiologic and Laboratory Evaluation.
aBoysen, Rozanski et al. Evaluation of a FAST protocol to detect

free abdominal fluid. JAVMA 2004;225:1198–1204.
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had not resulted in significant loss of information, the score for each

model for each patient was calculated, and AUROC discrimination

and calibration statistics were evaluated by checking a univariable

logistic regression model based on each of the scores.

All analyses were performed in Stata version 10.1.a Statistical

significance was set at P o .05 unless otherwise stated.

Results

Study Population Characteristics

The study population consisted of 606 cats consecu-
tively admitted to the ICU over the 32-month study
period. Six patients subsequently were excluded because
of inconsistencies in identification and consequently miss-
ing or uncertain outcome information. Cats constituted
18%of total ICU admissions over the study period. Death
occurred in 155 cats from the study population of 600 cats.
Over the study period, 74% of cats admitted to the ICU
were admitted after referral appointments, whereas 26%
of admissions followed 1st opinion assessments. Emer-

gency or unplanned admissions constituted 29% of the
admissions, whereas the remainder of admissions followed
scheduled appointments.

The primary diagnostic categories and mortality char-
acteristics of the study population are shown in Table 4.
The 3 most common reasons for ICU admission in this
group of patients included GI disease or pancreatitis, re-
nal or urinary tract disease, or trauma. When mortality
rates within the groups were tested against overall hospi-
tal mortality, patients with GI disease or pancreatitis had
significantly lower mortality (16.9%, P 5 .045) and pa-
tients admitted with a medical oncological problem had
significantly higher mortality (50.0%, P o .001) com-
pared with the patient group as a whole (25.8%).

Of the 155 deaths, 35 deaths (22.6%) occurred within
the medical oncology case group. For deaths within this
group, 2 cats died, and 19 were euthanized to relieve
suffering in the face of anticipated imminent death. The
remaining 14 cats euthanized in this case group were
judged to be clinically stable, but were euthanized at the

Table 4. Population characteristics and outcome for feline intensive care unit admissions.

Number % of Group Hospital Mortality %

P Value for Test of Mortality Differ-

ence between Case Group and

Overall Hospital Mortality

Gender

Male 339 56.5 26.0

Female 261 43.5 25.7

Source of admission

Referral 74.1

Primary care 25.9

Admission type

Emergency 28.8 29.2

Planned admission 71.2 24.0

Primary reason for admission

GI/pancreatitisa 83 13.8 16.9 .045

Trauma 73 12.2 19.2 .165

Spinal/peripheral neuropathy 7 1.2 14.3 .484

Medical oncologya 70 11.7 50.0 .000

Immune mediated disease 20 3.3 15.0 .261

Surgical oncology 28 4.7 17.9 .327

Respiratory 56 9.3 26.8 .858

Intracranial disease 18 3.0 44.4 .068

Renal/urinary tract 74 12.3 21.6 .377

Cardiac 45 7.5 26.7 .895

Hepatica 28 4.7 42.9 .035

Sepsis 23 3.8 39.1 .138

Ophthalmological 4 0.7 25.0 .971

Toxicity 12 2.0 16.7 .466

Endocrine disorder 8 1.3 0.0 .117

Diabetic 35 5.8 14.3 .109

Reproductive 3 0.5 0.0 .306

Miscellaneous 13 2.2 15.4 .389

Mortality-total deaths all cause 155 25.8

Type of death

Euthanasia due to

Current severity of illness 82 52.9

Terminal disease diagnosis 29 18.7

Financial constraints 17 11.0

Noneuthanasia death 27 17.4

Exclusions due to age/unavailable records 6

aMortality difference statistically significant at Po .05 by a 2-tailed chi-square test of difference in proportion tested against population as

a whole.
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owner’s request because of perceived poor overall quality
of life and diagnosis of a terminal disease. The overall
mortality rate for the study population (n 5 600) was
25.8% (n 5 155), of which 17.4% (n 5 27) of cats died
and 71.6% (n 5 111) were euthanized either in associa-
tion with anticipated imminent death, or in the face of
clinical morbidity and diagnosis of terminal disease. For
11.0% of deaths (n 5 17) the primary clinician listed fi-
nancial constraints as a primary motivating feature in the
euthanasia. The presenting complaints for these 17 cats
were as follows: persistent seizures, magnetic resonance
imaging declined (n 5 3); traumatic diaphragmatic her-
nia, surgery declined (n 5 2); multiple pelvic fractures,
surgery declined (n 5 4); renal failure, hospitalization
declined (n 5 2); abdominal effusion and mass effect,
biopsy declined (n 5 1); recurrent feline lower urinary
tract disease and urethral obstruction, catheterization
declined (n 5 2); suspect hepatic failure, diagnostic
work-up declined (n 5 1); septic peritonitis, surgery
declined (n 5 1); granular lymphocytic lymphoma,
chemotherapy declined (n 5 1).
Median time to death was 3 days, with a range of 0.5–

12 days. ICU stay was on average 1 day shorter for non-
survivors compared with survivors (median of 2 days
versus 3 days, P o .001). There was no difference in
mortality risk between construction and validation pa-
tient groups (26.0 versus 25.3%, P 5 .87). The mortality
risk associations for the putative variables, together with
the data availability, are shown in Table 5. The AUROC
characteristic for each variable as a univariable mortality
predictor also is shown.
Although many variables had a statistically significant

association with mortality, the 4 variables with the great-
est discriminant capacity as assessed by AUROC
analysis were urea (0.78), chloride (0.77), body tempera-
ture (0.71), and lactate (0.70). No significant association
was identified between chloride corrected for sodium and
mortality. Cholesterol, ionized calcium (iCa), and acti-
vated clotting time (ACT) were also associated with
mortality, although for ACT and iCa the availability of
data limited entry into the multivariable model build.
The exploratory LOWESS curves for these variables are
shown in Figure 1. For a subgroup of cats (n 5 139) with
ACT in the range 90–150 seconds, each 10-second in-
crease in ACT was associated with an estimated 50%
increase in mortality odds (OR, 1.48; 95% CI, 1.09–2.00;
P 5 .01). For a subgroup of cats (n 5 163) with an iCao
1.2mmol/L, each decrease in iCa of 0.1mmol/L was as-
sociated with an estimated 40% increase in mortality
odds (OR, 1.39; 95% CI, 1.06–1.83; P 5 .02). For a sub-
group of cats (n 5 25) with a cholesterol o2.3mmol/L,
each decrease in cholesterol of 0.1mmol/L was associ-
ated with an estimated 30% increase in mortality odds
(OR, 1.35; 95% CI, 1.02–1.80; P 5 .04).

Details of Score Development

The coagulation time variables (ACT, prothrombin
time, and partial thromboplastin time), and the variables
‘‘urine output (in mL/kg/h)’’ and ‘‘SpO2 (%)’’ were
dropped because of lack of available data on 430% of

patients. The mortality functions derived for selected
putative continuous variables by the LOWESS method
are shown in Figure 2.

After categorization of variables demonstrating lack of
linearity in the logit, a total of 37 variables were assessed
for univariable association with mortality. Nine variables
demonstrated a univariable lack of association with mor-
tality risk (P 4 .2) and were dropped. Twenty-eight
variables were entered into the stepwise backwards elimi-
nation procedure. Ten variables were selected at the end of
this process (bicarbonate, temperature, urea, body cavity
fluid score, chloride, mentation score, PCV, creatinine,
MAP, and lactate). The variables ‘‘bicarbonate’’ and
‘‘creatinine’’ were removed in the manual build to im-
prove calibration of the model in the validation cohort,
with minimal loss in performance, resulting in the final
8-variable model. A 5-variable model, consisting of the
variables from the group that are typically the most acces-
sible by ‘‘benchtop’’ methods (temperature, mentation
score, PCV, MAP, and lactate), also was evaluated.

Risk Stratification Scores

The performance characteristics of the final models are
presented in Table 6. The feline Acute Patient Physio-
logic and Laboratory Evaluation (APPLEfull) model had
excellent performance characteristics for discrimination,
with AUROCs of 0.91 (95% asymptotic CI, 0.87–0.94)
on the training cohort and 0.88 (95% asymptotic CI,
0.84–0.96) on the validation cohort. The feline AP-
PLEfast model had good discrimination characteristics,
with an AUROC of 0.83 (95% asymptotic CI, 0.79–0.86)
on the training cohort and an AUROC of 0.76 (95% as-
ymptotic CI, 0.72–0.84) on the validation cohort.
Calibration was good for both models in both cohorts.

Discrimination characteristics also were assessed for
each model in the validation data set after sequential
censoring of patients to which the various categories of
euthanasia applied, and finally with the deaths within the
validation data set restricted only to patients that ar-
rested spontaneously. Discrimination improved slightly
for both models when patients undergoing financially
driven euthanasia were excluded, improved again when
patients undergoing financially driven and terminal dis-
ease euthanasia were excluded, and improved markedly
when patient deaths were restricted solely to patients ex-
periencing spontaneous arrest. Calibration was retained
in all validation subsets, except when deaths were re-
stricted to patients experiencing spontaneous arrest, at
which time the overall mortality rate was significantly
lower than that predicted by the models, with fewer
observed deaths in the lower risk categories.

The models showed minimal loss of performance after
conversion to integer score format, despite the associated
rounding error, with the APPLEfull score AUROC 5 0.90
(asymptotic 95% CI, 0.87–0.93) and APPLEfast score
AUROC 5 0.82 (asymptotic 95% CI, 0.76–0.84) on the
training data set. Calibration also remained good with
Hosmer-Lemeshow C statistic P values of .22 and .82,
respectively. The final risk models, presented after conver-
sion to integer scores, are shown in Figures 3 and 4.
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Table 5. Univariable association between putative variables and mortality in cats admitted to the ICU of a referral
hospital.

Variable

Number of Cases

with Information

Available

Cats that Lived

Mean�SD or Median

(IQR) or %

Cats that Died,

Mean�SD or

Median (IQR) or

% P Value AUROC

Overall Mean�SD
or Median

(IQR) or %

ICU staya 600 3 (2–4) 2 (1–4) o.001 2 (1–4)

Age 596 8 (3–12) 8 (4–12) .394 0.54 8 (3–12)

Chronic dxa 600 42% 28% .002 0.57 38.3%

Nutritional status 600 0.53

Normal 62.2% 67.1% .275

Anorexic 26.1% 24.5% .695

Feeding tube 11.4% 7.7% .195

Parenteral 0.2% 0.6% .436

Urinary catheter placement 600 10.6% 11.0% .888 0.50 10.7%

Oxygen supporta 600 19.6% 40.6% .000 0.60 25%

Pressor supporta 600 1.1% 7.1% .000 0.53 2.7%

Transfusion support 600 0.51

FFP 4.5% 3.2% .485 4.2%

PRBC/whole blood 5.4% 4.5% .662 5.2%

Any product 9.9% 7.7% .417 9.3%

Mechanical ventilation sup-

porta
600 0.2% 7.7% .000 0.54 2.2%

Body weight (kg) 600 4.8�2.2 5.0�3.1 .254 0.55 4.9�2.4
Body temperaturea (1C) 569 38.5 (37.6–39.2) 37.4 (36.4–38.9) .000 0.71 38.4 (37.2–39.1)

Heart ratea (bpm) 587 200�36 189�42 .002 0.57 198�38
Respiratory ratea (bpm) 579 44�19 48�23 .090 0.57 45�20
MAPa (mmHg) 444 109�27 95�29 .000 0.68 105�28
Urine output (mL/kg/h) 42 2.1 (1.0–3.1) 1.8 (0.8–2.7) .504 1.9 (1.0–3.0)

Body condition score (1–5) 533 2.9�0.9 2.8�1.0 .65 0.53 2.9�1.0
Mentation scorea (0–4) 587 0 (0–1) 1 (0–2) .000 0.67 0 (0–1)

EKG scorea 561 0.52

0 95.5% 90.8% .037 94.1%

1 3.6% 7.1% .082 4.6%

2 1.0% 2.1% .008 1.3%

Body cavity fluid scorea 590 0.59

0 86.9% 68.2% .000 82.2%

1 10.9% 26.4% .000 14.7%

2 1.4% 5.4% .006 2.4%

3 0.9% 0% .247 0.7%

SpO2 (pulse oximeter) 31 98% (96–99) 97% (94–99) .477 98% (94–99)

PvCO2 (mmHg) 546 41.5 (37.5–46) 40.7 (35.7–46.3) .491 0.57 41.3 (37.1–46.1)

HCO3 (mmol/L)a 546 19.7�4.4 18.3�5.5 .001 0.61 19.3 �4.7
pHa 546 7.31 (7.26–7.34) 7.27 (7.19–7.34) .000 0.66 7.30 (7.24–7.34)

Na (mmol/L)a 546 153�5.2 150�7.7 .000 0.62 152�6.1
Cl (mmol/L)a 546 120�6.3 117�8.9 .000 0.77 119�7.2
Corrected Cl (mmol/L) 546 118�5.3 117�6.7 .322 0.51 118�5.7
K (mmol/L)a 546 3.7 (3.4–4.1) 3.8 (3.3–4.6) .000 0.62 3.8 (3.4–4.2)

Glucose (mmol/L)a 548 8.2 (6.3–10.7) 7.8 (5.9–10.7) .002 0.61 8 (6.2–10.7)

Lactate (mmol/L)a 546 1.9 (1.3–2.7) 2.3 (1.5–4.3) .000 0.70 2.0 (1.3–2.9)

iCa (mmol/L)a 401 1.26 (1.20–1.32) 1.22 (1.14–1.41) .001 0.67 1.25 (1.18–1.32)

PCV (%) 546 31�10.1 31�9.9 .180 0.56 31�10.0
TP (g/dL)a 532 7.1�1.24 6.9�1.59 .000 0.63 7.1�1.34
ACT (seconds)a 187 116 (105–134) 128 (116–172) .001 0.65 119 (106–147)

Creatinine (mmol/L) 510 111 (80–155) 107 (80–179) .113 0.18 110 (80–163)

CK 510 460 (210–1876) 529 (269–1818) .716 0.51 472 (221–1834)

Urea (mmol/L)a 510 8.9 (6.9–15.3) 9.8 (6.1–18.7) .000 0.78 9.1 (6.8–15.9)

Albumin (g/L)a 510 33�5.9 31�8.2 .027 0.59 33 (6.5)

Total bilirubin (mmol/L)a 510 3 (2–5) 3 (2–8) .030 0.58 3 (2–6)

Cholesterola 510 3.6 (2.9–4.7) 4.0 (3.3–5.1) .046 0.18 3.8 (3.0–4.9)

WBC count 462 10.9 (7.4–16.0) 11.6 (7.7–14.9) .071 0.58 11.3 (7.5–15.8)

Platelet count 462 231 (152–338) 232 (146–377) .075 0.57 232 (150–349)

ICU, intensive care unit; AUROC, area under the receiver operator characteristic curve; IQR, interquartile range; MAP, mean arterial

pressure; ACT, activated clotting time.
aVariables associated with mortality risk with Po .05 in univariable analysis.
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The scores in conventional (US) units are shown in Ap-
pendix 1, as Figures A1 and A2. Body cavity fluid scores
and mentation scores were assigned as detailed in Table 3.
The central cell in each figure represents the range of

values for the variable for which 0 points would be as-

signed. The cells to either side show the appropriate
score for the corresponding range of the variable. The
final score for the patient is achieved by summing the
scores for each variable. Reflecting the underlying mul-
tivariable logistic model, no variables can be omitted

Fig 1. LOWESS curves to show the relationship between cholesterol, ACT, and iCa and mortality risk for cats admitted to the ICU of a referral

hospital. LOWESS, locally weighted scatter plot smoothing; ACT, activated clotting time; ICU, intensive care unit; iCa, ionized calcium.

Fig 2. LOWESS curves to show the relationships between mortality risk and selected continuous variables in a population of cats admitted

to the ICU of a referral hospital. The vertical lines mark the category limits subsequently applied when the variables were categorized, before

entry into a logistic regression model. LOWESS, locally weighted scatter plot smoothing; ICU, intensive care unit.
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when calculating the score for a patient because the
score assignments for the remaining variables would
change, resulting in inaccuracy. The relationship be-
tween each variable and mortality risk is dependent on
the other variables within the model. The integer
scores can be converted to mortality risk probabilities
(range, 0–1) by the equations shown in Figure 5,
where P is the mortality risk probability and R is logit
(P). Figure 6 depicts the relationship between the feline
APPLE scores and the predicted probability of
mortality. An example of score calculation is shown in
Figure 7.

Discussion

The objective of this study was to construct and vali-
date a robust mortality risk prediction score for
hospitalized cats. This would facilitate assignment of an
objective score reflecting severity of illness to any cat en-
rolled in clinical research. The scores we developed had a
high degree of predictive accuracy when assessed in a
group of patients independent to those used for the
model build, with AUROCs of 0.88 and 0.76, and no
loss of calibration. The scores are transparent and easy to

calculate manually. The scores are based on variables
that are inexpensive to measure and readily available.
The full 8-variable score performed better than the fast
5-variable score based on the AUROC 95% confidence
intervals.

The statistical methodology used was crucial to the
success of this project, and some areas of the statistical
process justify further discussion. We elected to ran-
domly divide our patient group into a construction and
validation cohort. This was done to allow validation of
the final scores on a patient group independent of that
used for construction. Consistent with modeling practice,
the number of deaths in the model construction group
(n 5 115) suggested that the final model would be appro-
priately limited to a maximum of 10 variables to avoid
problems with model instability.15 One of the assump-
tions of a logistic regression model is that the putative
variables have a linear relationship with nonsurvival
when nonsurvival is plotted on the logit scale. Therefore
variables that are nonlinear must be transformed before
model inclusion, or false conclusions about the strength
of associations may be drawn. Many clinical variables
may be intuitively anticipated to have a nonlinear (typi-
cally quadratic) association with mortality risk. For
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Fig 3. Feline Acute Patient Physiologic and Laboratory Evaluation (APPLEfull) score: Calculated by summing the value in the upper left

corner of the appropriate cell for each of the 8 parameters listed, with a maximum potential score of 80. The central cell in each figure

represents the range of values for the variable for which 0 points would be assigned. The cells to either side show the appropriate score for the

corresponding range of the variable. The final score for the patient is achieved by summing the scores for each variable. See Table 3 for

calculation of ‘‘fluid score’’ and ‘‘mentation score.’’ ‘‘Mentation score’’ is collected at admission, for all others utilize the most abnormal value

identified over the 24-hour period following admission. If history and physical exam fail to prompt assessment of fluid score, assign zero.

Mean arterial pressure (MAP) reflects the value recorded forMAP if direct or indirect manometry is used, or the pressure corresponding to 1st

return of audible signal on cuff deflation if Doppler is used.

Table 6. Performance characteristics of the feline APPLE models.

Data Set Restrictions

AUROC for AP-

PLEfull Model

Hosmer-Lemeshow C

Statistic

AUROC for AP-

PLEfast Model

Hosmer-Lemeshow C

Statistic

Construction data set 0.91 w8
2 5 9.90, P 5 .27 0.83 w8

2 5 0.72, P 5 .99

Validation data set 0.88 w10
2 5 14.88, P 5 .14 0.76 w10

2 5 9.93, P 5 .45

Validation data set, financial euthanasia censored 0.89 w10
2 5 15.22, P 5 .12 0.78 w10

2 5 14.48, P 5 .15

Validation data set, financial and terminal disease

euthanasia censored

0.90 w10
2 5 15.22, P 5 .12 0.78 w10

2 5 14.79, P 5 .14

Validation data set, all euthanasia censored 0.93 w10
2 5 22.64, P 5 .01 0.80 w10

2 5 41.48, P � .01

AUROC, area under the receiver operator characteristic curve; APPLE, Acute Patient Physiologic and Laboratory Evaluation.
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instance, body temperature would be expected to be as-
sociated with increased mortality risk at extremes of both
high and low temperature. This clinical expectation was
confirmed in our exploratory data plots (see Fig 1). A
number of methods are available for modeling nonlinear
variables, including fractional polynomials, linear or cu-
bic splines, or categorization of the continuous variable.
After exploration of the various options, we elected to
use categorization. Categorization of nonlinear continu-
ous variables is a time-honored approach in medical
statistics, and has been used in most of the major risk
prediction models used in humans to date.6–8 Although
there are several disadvantages with this approach, in-
cluding the potential loss of information, these are
outweighed by the advantages. When the population
modeled is large enough, these advantages include flexi-
bility, robustness to spurious risk assignment, and ease of
final model interpretation and presentation.
Two important points pertaining to score use deserve

emphasis. First, the scores have been constructed and
validated on patient data obtained over the initial 24
hours after hospital admission, for patients requiring IV
fluid support or close monitoring. As such, the prospec-
tive calculation of these scores from patient data limited
only to admission, from patient data from days later in
the hospital stay, or for outpatients, is not appropriate.
The performance of the scores when calculated from data
collected over a time period different than that used in
this study has not been assessed. Secondly, these scores

are designed to risk stratify populations, not to prognos-
ticate individual patients. The confidence intervals for
the scores are wide, as shown in Figure 6, with an AP-
PLEfull score of 40 reflecting a mortality risk probability
of anywhere from 30 to 50%. Basing a euthanasia rec-
ommendation on these scores is likely to result in the
euthanasia of an unacceptably large proportion of pa-
tients that could in fact have lived, whatever cut point is
chosen. Development of guidelines for the appropriate
use of the equivalent human scores has resulted in the
following broad recommendations. Use of scores for the
implementation of withdrawal of care protocols is con-
traindicated. Use of scores to stratify patients to facilitate
triage protocols, for instance scheduling of procedures, is
acceptable. Use of scores to assist patient-adjusted clini-
cian performance benchmarking is acceptable, as is use
of scores in the context of clinical research. These recom-
mendations appear to apply equally well in veterinary
medicine.1

One of the goals of this study was to develop a score
that could achieve a high uptake prospectively across a
wide range of treatment centers. In line with this aim, we
attempted to select widely available variables for evalua-
tion. We also selected a method of score presentation
that facilitated an intuitive and easy approach to patient
score calculation, with minimal math. To our knowledge,
this particular method of regression model presentation
has not been previously reported in veterinary medicine,
and we have reported the statistical methods in detail for
that reason. Illness severity scores have so far achieved
relatively limited acceptance in veterinary medicine, with
comments from recent studies indicating that they con-
tain too many variables to be easily calculated,
particularly retrospectively.19 We hoped to circumvent
this complaint by presenting a 5-variable score based on
only benchtop and clinical variables. All variables were
assessed as the ‘‘most abnormal’’ over the 24-hour period
after admission, with the exception of mentation score.
This was done to gain the best possible assessment of
patient baseline status before administration of analge-
sics or sedation.

A particular challenge in the development of veteri-
nary risk prediction models is the prevalence of
euthanasia as the predominant mortality outcome in vet-

Where p=mortality probability and R=logit p

feline APPLEfull score:  p1=exp (R1) / (1+ exp[R1])

R1=(0.213 x APPLEfull) – 9.472

feline APPLEfast score:   p2=exp (R2) / (1+exp [R2])

R2=(0.203 x APPLEfast) – 6.142

Fig 5. Equations relating the feline Acute Patient Physiologic and

Laboratory Evaluation (APPLE) scores to mortality risk probabil-

ity (P), with a mortality probability of 0–1.
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reflects the value recorded for MAP if direct or indirect manometry is used, or the pressure corresponding to 1st return of audible signal on

cuff deflation if Doppler is used.
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erinary patient populations. In the referral hospital set-
ting, the request for euthanasia of the animal by the client
typically is made on the basis of information and opinion
received from the clinician. Thus, if the clinician per-
ceives a particular clinical state, for instance,
hypotension, as negatively prognostic, and this concern
is relayed to the client resulting in a euthanasia decision,
then an association between hypotension and death will
be created whether this association truly exists or not.
Results then may be biased toward a false positive asso-
ciation between a variable and mortality. This quandary
is not unique to veterinary medicine. In human neonatal
and adult ICUs, between 50 and 90% of deaths occur in
association with withdrawal and withholding of care.20,21

Administration of opioids and sedatives has been shown
to increase after care withdrawal orders.20,21 When pa-
tients or families are involved in the decision-making
process, clinicians have been shown to withhold infor-
mation on therapies they regard as futile.22 This situation
has many parallels with that faced in veterinary medicine
with the issue of clinician-informed, client-requested end-
of-life care. The approach typically taken in human mor-
tality risk prediction studies is to assume that patients
dying after withdrawal of treatment, for instance, dis-
continuation of mechanical ventilation, would have
ultimately died had treatment been maintained. Risk pre-
diction models then have been calculated to date with no
differentiation between patients that died in the face of
maximal treatment and those that died after withdrawal
of treatment. Despite this issue, the human risk predic-
tion models have constituted a robust and highly
valuable clinical research tool for many years.
The best known diagnosis-independent illness severity

score available in veterinary medicine to date is the Sur-
vival Prediction Index.11 For the development of this
score, animals that died or were euthanized for any rea-

son were modeled without differentiation, and the
prevalence of euthanasia within the group was not re-
ported. We elected to take a slightly different approach.
We acknowledged that the purest form of score develop-
ment would take place on a patient population where the
only patients dying would be those experiencing sponta-
neous death in the face of maximal intervention.
However, this population does not exist in medicine.
The performance of humane euthanasia to relieve unnec-
essary suffering in moribund animals considered to be
awaiting death is widespread within the culture of veter-
inary medicine, and appropriately so. To exclude
euthanized patients from clinical research risks promot-
ing the ethically unacceptable practice of withholding
humane euthanasia for dying animals, as well as gener-
ating a study population that does not reflect the target
population we work with day to day. Exclusion of eu-
thanized patients obviously was not a practical approach
for a study of this type. Instead, we elected to categorize
the primary reasons for euthanasia in each case, and per-
form a cross-validation of the model while censoring
successive euthanasia categories, with the final validation
reported on a group containing only cats that experi-
enced noneuthanasia death. We found that the
discrimination of our score steadily improved as this
was done, with AUROCs increasing from 0.88 to 0.93
and 0.76 to 0.80. This suggests that the variables and co-
efficients assigned in the training data set are truly
reflective of mortality probability rather a ‘‘euthanasia
risk’’ based on false premises. Calibration was lost in the
final ‘‘noneuthanasia death only’’ group, reflecting the
higher all-cause mortality in the construction data set rel-
ative to mortality restricted to noneuthanasia deaths only
in the validation data set. In reflection of the complex de-
cision making involved in euthanasia, difficulty selecting
the primary category was occasionally experienced. Re-

Fig 6. The relationship between the feline Acute Patient Physiologic and Laboratory Evaluation (APPLE) scores and predicted mortality

risk probabilities, with 95% CIs. The underlying scatter plots show the scores calculated for the patients in the combined construction and

validation data sets, with the dark gray dots representing patients who died, and the lighter gray dots representing patients who lived.
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flecting this, euthanasia for any reason and noneuthanasia
death were allotted equivalent status in the primary model
build, and the most conservative AUROCs for the valida-
tion cohort reported in the abstract.
Our cross validation results suggest that the scores

proposed should provide a reliable assessment of indi-
vidual illness severity, and truly reflect underlying
mortality probabilities. In common with all scores, how-
ever, they may under- or over-predict mortality rates for
the group as a whole if applied prospectively to popula-
tions with significantly lower or higher mortality rates
than those reported for our populations. Because the pri-
mary intended use for these scores is to offer an objective
measure of baseline illness severity for comparison of
groups enrolled in clinical research, we do not regard this
as a serious issue for prospective use. Provided the study
groups are from the same underlying primary popula-
tion, loss of calibration is unlikely to bias group
comparisons.
The coefficients assigned by the multivariable model to

some of the variables had construct validity; for instance,
the steadily increasing scores for increasing lactate and
decreasing blood pressure make clinical sense. However,
the scores assigned in a multivariable model may be very
different to those anticipated in the clinically familiar

univariable context. The risk coefficients in a multivari-
able model reflect the influence of a variable on the
outcome after taking into account the simultaneous in-
fluence of all the other variables in the model. This key
feature may require some additional explanation. As a
hypothetical example, if the simultaneous influence of
lactate and pH on mortality risk was modeled, it is likely
that some, but probably not all, of the influence of high
lactate on mortality risk would be mediated through low
pH. If both variables were placed in a multivariable
model, this would result in the coefficients for lactate re-
flecting only the direct effect of lactate on mortality risk
independent to that mediated through low pH. Thus, as
more variables enter the model, some coefficients that
may not appear clinically intuitive are likely to arise. This
will be particularly true for confounding, intervening, or
distorter variables that achieve their predictive utility by
refining the model after the impact of the primary pre-
dictive variables has occurred.15 We suspect PCV and
chloride may fall into these categories.

There are several areas of weakness in this study. The
first is the relatively small number of cats enrolled. Cats
do not form as large a group as dogs in our hospital pop-
ulation, and this is reflected in this study. The human
predictive models typically are calculated from several

‘Rusty’ 6 year old DSH admitted to hospital with acute onset dyspnoea, maintained on oxygen support and 
IV fluids 

Mentation score at admission: Unable to stand, responsive- score 8  

 revo detceted eulav lamronba tsoM retemaraP
the first 24 hours of admission 

APPLEfull  Score 

 3 0.73 )C°( erutarepmet latceR
Mean arterial pressure  4 08 )relppoD( )gHmm(

 5 2.3 )L/lomm( etatcaL
 11 81 )%( VCP

 7 2.51 )L/lomm( aerU
 0 121 )L/lomm( edirolhC

Body cavity fluid score Thoracic free fluid present 3

Total APPLE full score= 8+3+4+5+11+7+0+3= 41/80 

Conversion to mortality probability (p) using 
equations in Figure 5:  
R=(0.213 x 41) -9.472= -0.739 
p=exp(-0.739)/(1+exp(-0.739))=0.32 

Thus in the range 0 to 1 estimated mortality 
probability for this patient is 0.32 or 32% risk of non-
survival to discharge.  

Fig 7. Example of patient Acute Patient Physiologic and Laboratory Evaluation (APPLEfull) score calculation and conversion to mortality

probability (P).
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thousand patients from many different hospitals, and
this results in a degree of model stability that we cannot
hope to replicate here. Despite statistical techniques such
as model checking and bootstrapping designed to im-
prove stability as far as possible, considerably higher
patient numbers would have been desirable. On a similar
note, we were unable to validate our model on a com-
pletely independent population from a different hospital
or group of hospitals. Ideally, both model construction
and validation data sets should be multicenter, again to
improve model stability when used prospectively. The 8-
variable model showed better predictive performance
than the 5-variable model, and as such would be the op-
timal model to use wherever possible. The 5-variable
model has the advantage that it requires only ‘‘bench-
top’’ or clinical variables, and therefore may be more
accessible in some circumstances.
Additional concerns include our use of Doppler in-

strumentation to assess blood pressure in our patients.
We took the point of 1st return of sound to indicate the
MAP in our patients. Although this has been shown to be
true in anesthetized cats,14 it has not been validated in
awake cats to date. Another potential weakness was the
use of ultrasound examination to assess for the presence
of free fluid. Variation in equipment sensitivity and
operator skill may decrease the repeatability of this
variable. Finally, for euathanized patients the primary
reason for euthanasia was assigned on the basis of the
subjective impression of the primary clinician; owners
were not questioned directly. This may have resulted in
misclassification error for some patients.
In conclusion, we developed and presented in a user-

friendly manner 2 scores that offer a robust measure of
illness severity and facilitate objectification of illness se-
verity in clinical research. The scores have been validated
on patient groups independent to that used in construc-
tion, and are free from euthanasia bias. The 8-variable
model offers optimal discrimination, but use is depen-
dent on the availability of a chemistry profile and the use
of ultrasound as a routine triage tool. The 5-variable
model offers good discrimination, and the variables may
be more readily accessible. Both scores calibrate well. In-
dependent multicenter validation is a goal for the future.

Footnote

a StataCorp LP, College Station, TX
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Fig A1. Feline Acute Patient Physiologic and Laboratory Evaluation (APPLEfull) score conventional (US) units: Calculated by summing the

value in the upper left corner of the appropriate cell for each of the 8 parameters listed, with a maximum potential score of 80. The central cell

in each figure represents the range of values for the variable for which 0 points would be assigned. The cells to either side show the appropriate

score for the corresponding range of the variable. The final score for the patient is achieved by summing the scores for each variable. See Table

3 for calculation of ‘‘fluid score’’ and ‘‘mentation score.’’ ‘‘Mentation score’’ is collected at admission, for all others utilize the most abnormal

value identified over the 24-hour period following admission. If history and physical exam fail to prompt assessment of fluid score, assign zero.

Mean arterial pressure (MAP) reflects the value recorded forMAP if direct or indirect manometry is used, or the pressure corresponding to 1st

return of audible signal on cuff deflation if Doppler is used.
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Fig A2. Feline Acute Patient Physiologic and Laboratory Evaluation (APPLEfast) score conventional (US) units: Calculated by summing the

value in the upper left corner for each of the 5 parameters listed, with a maximum potential score of 50. The central cell in each figure

represents the range of values for the variable for which 0 points would be assigned. The cells to either side show the appropriate score for the

corresponding range of the variable. The final score for the patient is achieved by summing the scores for each variable. ‘‘Mentation score’’ is

collected at admission (see Table 3), for all others utilize the most abnormal value identified over the 24-hour period following admission.

Mean arterial pressure (MAP) reflects the value recorded forMAP if direct or indirect manometry is used, or the pressure corresponding to 1st

return of audible signal on cuff deflation if Doppler is used.
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